# **Appendix 4-A. Electricity Case Studies**

The following case studies, obtained by running LMOP's LFGcost economic assessment tool, are example preliminary economic assessments for a 3 megawatt (MW) landfill gas (LFG) electricity project using internal combustion engines. The first case, named "Electricity 1" is a privately funded project at a landfill that already has an LFG collection and flaring system in place. A similar case for a landfill that does not have an LFG collection and flaring system and must include collection system and flare costs in the economic assessment is named "Electricity 2." Also included are several other cases, including projects that receive revenue through greenhouse gas credits or renewable energy credits and projects that use municipal funding. The summary table below describes each case. The following pages present the actual output from <a href="LFGcost-Web">LFGcost-Web</a>.

# **Privately Developed Projects**

| Thivatery beveloped Flogetts |                                                                    |                                                                                                                                                                                                                    |                                                                                                                 |  |  |
|------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|
| Case Study<br>Name           | Project Description                                                | Financing and Revenue<br>Elements                                                                                                                                                                                  | Financial Results Summary                                                                                       |  |  |
| Electricity 1                | 3 MW engine project     No collection and flaring system required  | <ul> <li>20% down payment,<br/>80% financed</li> <li>8% interest rate</li> <li>6¢/kWh (default)<br/>electricity price</li> </ul>                                                                                   | Capital cost: \$5,150,800<br>0&M cost: \$526,317<br>NPV: \$587,078<br>IRR: 14%<br>NPV payback (years): 12       |  |  |
| Electricity 2                | 3 MW engine project     LFG collection and flaring system required | <ul> <li>20% down payment,<br/>80% financed</li> <li>8% interest rate</li> <li>6¢/kWh (default)<br/>electricity price</li> </ul>                                                                                   | Capital cost: \$7,631,513<br>0&M cost: \$884,764<br>NPV: (\$3,508,256)<br>IRR: -7%<br>NPV payback (years): none |  |  |
| Electricity 3                | 3 MW engine project     LFG collection and flaring system required | <ul> <li>20% down payment,<br/>80% financed</li> <li>8% interest rate</li> <li>8.76¢/kWh electricity<br/>price calculated to<br/>achieve 10% IRR</li> </ul>                                                        | Capital cost: \$7,631,513  0&M cost: \$924,816  NPV: \$4,881  IRR: 10%  NPV payback (years): 15                 |  |  |
| Electricity 4                | 3 MW engine project     LFG collection and flaring system required | <ul> <li>20% down payment,<br/>80% financed</li> <li>8% interest rate</li> <li>6¢/kWh (default)<br/>electricity price</li> <li>\$4/metric ton carbon<br/>dioxide equivalent credit<br/>revenue included</li> </ul> | Capital cost: \$7,631,513<br>O&M cost: \$884,764<br>NPV: (\$62,709)<br>IRR: 10%<br>NPV payback (years): None    |  |  |
| Electricity 5                | 3 MW engine project     No collection and flaring system required  | <ul> <li>20% down payment,<br/>80% financed</li> <li>8% interest rate</li> <li>6¢/kWh (default)<br/>electricity price</li> <li>2¢/kWh renewable<br/>energy credit included</li> </ul>                              | Capital cost: \$5,150,800<br>0&M cost: \$526,317<br>NPV: \$2,615,488<br>IRR: 30%<br>NPV payback (years): 5      |  |  |

# **Municipality-Developed Projects**

| Coop Ctudy         |                                                                                                 | Financing and Davenue                                                                                                                                                                 |                                                                                                                |
|--------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Case Study<br>Name | Project Description                                                                             | Financing and Revenue<br>Elements                                                                                                                                                     | Financial Results Summary                                                                                      |
| Electricity 6      | <ul> <li>3 MW engine project</li> <li>No collection and<br/>flaring system required</li> </ul>  | <ul> <li>100% down payment using municipal budget</li> <li>6% discount rate</li> <li>6¢/kWh (default) electricity price</li> </ul>                                                    | Capital cost: \$5,150,800<br>0&M cost: \$526,317<br>NPV: \$3,536,852<br>IRR: 15%<br>NPV payback (years): 8     |
| Electricity 7      | <ul> <li>3 MW engine project</li> <li>No collection and<br/>flaring system required</li> </ul>  | <ul> <li>20% down payment,<br/>80% bond-financed</li> <li>6% interest rate,<br/>6% discount rate</li> <li>6% kWh (default) electricity<br/>price</li> </ul>                           | Capital cost: \$5,150,800<br>0&M cost: \$526,317<br>NPV: \$3,303,608<br>IRR: 24%<br>NPV payback (years): 7     |
| Electricity 8      | <ul> <li>3 MW engine project</li> <li>LFG collection and<br/>flaring system required</li> </ul> | <ul> <li>100% down payment using municipal budget</li> <li>6% discount rate</li> <li>6¢/kWh (default) electricity price</li> </ul>                                                    | Capital cost: \$7,631,513<br>0&M cost: \$884,764<br>NPV: (\$2,553,089)<br>IRR: 0%<br>NPV payback (years): none |
| Electricity 9      | 3 MW engine project     LFG collection and flaring system required                              | <ul> <li>20% down payment,<br/>80% bond-financed</li> <li>6% interest rate,<br/>6% discount rate</li> <li>6¢/kWh (default) electricity<br/>price</li> </ul>                           | Capital cost: \$7,631,513  O&M cost: \$884,764  NPV: (\$2,898,667)  IRR: -5%  NPV payback (years): none        |
| Electricity 10     | <ul> <li>3 MW engine project</li> <li>LFG collection and<br/>flaring system required</li> </ul> | <ul> <li>20% down payment,<br/>80% bond-financed</li> <li>6% interest rate,<br/>6% discount rate</li> <li>7.73¢/kWh electricity price<br/>calculated to achieve 6%<br/>IRR</li> </ul> | Capital cost: \$7,631,513  O&M cost: \$904,064  NPV: \$3,135  IRR: 6%  NPV payback (years): 15                 |

IRR: internal rate of return

kWh: kilowatt-hour NPV: net present value

O&M: operation and maintenance

Electricity 1 9/3/2009



Case Study ID: Electricity 1

## U.S. EPA Landfill Methane Outreach Program

# Landfill Gas Energy Cost Model LFGcost, Version 2.0

# **Summary Report**

Landfill Name or Identifier: Private Finance

LFGE Project Type: Standard Reciprocating Engine-Generator Set

Date: Thursday, September 03, 2009

### Disclaimer:

LFGcost is a landfill gas energy project cost estimating tool developed for EPA's LMOP. LFGcost estimates landfill gas generation rates using a first-order decay equation. This equation is used to estimate generation potential but can not be considered an absolute predictor of the rate of landfill gas generation. Variations in the rate and types of incoming waste, site operating conditions, and moisture and temperature conditions may provide substantial variations in the actual rates of generation.

The costs that are estimated by LFGcost are based on typical project designs and for typical landfill situations. The model attempts to include all equipment, site work, permits, operating activities, and maintenance that would normally be required for constructing and operating a typical project. However, individual landfills may require unique design modifications which would add to the cost estimated by LFGcost.

Analyses performed using LFGcost are considered preliminary and should be used for guidance only. A detailed final feasibility assessment should be conducted by qualified landfill gas professionals prior to preparing a system design, initiating construction, purchasing materials, or entering into agreements to provide or purchase energy from a landfill gas project.

## **Summary Results**

Project Start Year: 2011
Project End Year: 2025

Project Type: Standard Reciprocating Engine-Generator Set

Financial Results:

Net Present Value: \$587,078 (at year of construction)

Internal Rate of Return: 14%

Net Present Value Payback (yrs): 12 (years after operation begins)

Installed Capital Costs:

 ${\it Gas\ Compression/Treatment,\ Engine/Generator,\ Site\ Work,\ and}$ 

Housings: \$4,895,775

Electrical Interconnect Equipment: \$255,025

Total Capital Costs: \$5,150,800

O&M Costs: \$526,317 (for initial year of operation)

These financial results DO NOT include the costs associated with the LFG collection and flaring system.

Electricity 1 9/3/2009

### **Environmental Benefits**

Benefits from Collecting and Destroying Methane (during the life of the project):

Lifetime

(million  $ft^3$  methane): 5,068 (MMTCO<sub>2</sub>E): 2.04E+00

Average Annual

(million ft<sup>3</sup> methane/yr): 338 (MMTCO<sub>2</sub>E/yr): 1.36E-01

Benefits from Avoided Electricity Generation from Fossil Fuels (during the life of the project):

Lifetime (MMTCO<sub>2</sub>E): 2.41E-01 Average Annual (MMTCO<sub>2</sub>E/yr): 1.61E-02

**Landfill Characteristics** 

Open Year:1994Closure Year:2014

Waste-In-Place at Closure (tons) 5,400,000

Average Waste Acceptance (tons/yr): 270,000

Average Depth of Landfill Waste (ft): 50

Area of LFG Wellfield to Supply Project (acres): 110

Landfill Gas Generation, Collection, and Utilization

Modeling Parameters for First-Order Decay Equation:

Methane Generation Rate, k (1/yr): 0.040 Methane Generation Capacity,  $L_o$  (ft<sup>3</sup>/ton): 3,204 Methane Content of LFG: 50%

Generated During Project Lifetime (ft³/min):

 Minimum:
 1,167

 Annual Average:
 1,513

 Maximum:
 1,813

Collected During Project Lifetime (ft³/min):

 Minimum:
 992

 Annual Average:
 1,286

 Maximum:
 1,541

Project Size: Defined by User

Design Flow Rate for Project (ft<sup>3</sup>/min): 1,112

Utilized by Project (ft³/min):

Annual Average: 1,019 **LFG Collection Efficiency:** 85%

**Financial Assumptions** 

Loan Lifetime (years): 10
Interest Rate: 8.0%

General Inflation Rate: 2.5% (applied to O&M costs)

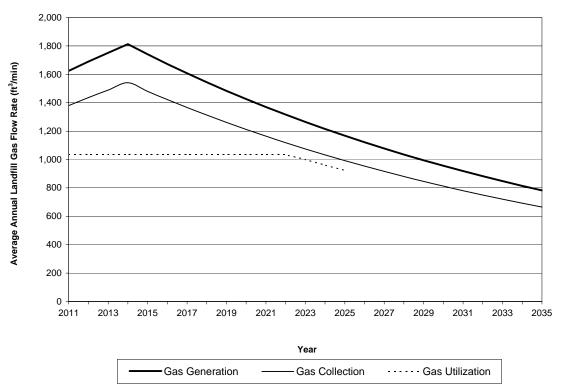
Equipment Inflation Rate: 1.0%

Marginal Tax Rate: 35.0%

Discount Rate: 10.0%

Down Payment: 20.0%

Collection and Flaring Costs: NOT Included


Electricity 1 9/3/2009

## **Electricity Production and Sales Summary**

Total Generation Capacity (kW): 3,000

Average Generation (million kWh/yr): 22.407 (during the life of the project)

Initial Year Electricity Price (\$/kWh): 0.060



Electricity 2 9/3/2009



Case Study ID: Electricity 2

## U.S. EPA Landfill Methane Outreach Program

# Landfill Gas Energy Cost Model LFGcost, Version 2.0

# **Summary Report**

Landfill Name or Identifier: Private Finance

Including Costs for Gas Collection and Flare

LFGE Project Type: Standard Reciprocating Engine-Generator Set

Date: Thursday, September 03, 2009

### Disclaimer:

LFGcost is a landfill gas energy project cost estimating tool developed for EPA's LMOP. LFGcost estimates landfill gas generation rates using a first-order decay equation. This equation is used to estimate generation potential but can not be considered an absolute predictor of the rate of landfill gas generation. Variations in the rate and types of incoming waste, site operating conditions, and moisture and temperature conditions may provide substantial variations in the actual rates of generation.

The costs that are estimated by LFGcost are based on typical project designs and for typical landfill situations. The model attempts to include all equipment, site work, permits, operating activities, and maintenance that would normally be required for constructing and operating a typical project. However, individual landfills may require unique design modifications which would add to the cost estimated by LFGcost.

Analyses performed using LFGcost are considered preliminary and should be used for guidance only. A detailed final feasibility assessment should be conducted by qualified landfill gas professionals prior to preparing a system design, initiating construction, purchasing materials, or entering into agreements to provide or purchase energy from a landfill gas project.

## **Summary Results**

Project Start Year: 2011
Project End Year: 2025

Project Type: Standard Reciprocating Engine-Generator Set

**Financial Results:** 

Net Present Value: (\$3,508,256) (at year of construction)

Internal Rate of Return: -7%

Net Present Value Payback (yrs): None (years after operation begins)

Installed Capital Costs:

Gas Collection and Flare: \$2,480,713

 ${\it Gas\ Compression/Treatment,\ Engine/Generator,\ Site\ Work,\ and}$ 

Housings: \$4,895,775

Electrical Interconnect Equipment: \$255,025

Total Capital Costs: \$7,631,513

O&M Costs: \$884,764 (for initial year of operation)

These financial results include the costs associated with the gas collection and flaring system.

Electricity 2 9/3/2009

### **Environmental Benefits**

Benefits from Collecting and Destroying Methane (during the life of the project):

Lifetime

(million ft<sup>3</sup> methane): 5,068 (MMTCO<sub>2</sub>E): 2.04E+00

Average Annual

(million ft<sup>3</sup> methane/yr): 338 (MMTCO<sub>2</sub>E/yr): 1.36E-01

Benefits from Avoided Electricity Generation from Fossil Fuels (during the life of the project):

Lifetime (MMTCO<sub>2</sub>E): 2.41E-01 Average Annual (MMTCO<sub>2</sub>E/yr): 1.61E-02

**Landfill Characteristics** 

Open Year:1994Closure Year:2014

Waste-In-Place at Closure (tons) 5,400,000

Average Waste Acceptance (tons/yr): 270,000

Average Depth of Landfill Waste (ft): 50

Area of LFG Wellfield to Supply Project (acres): 110

Landfill Gas Generation, Collection, and Utilization

Modeling Parameters for First-Order Decay Equation:

Methane Generation Rate, k (1/yr): 0.040 Methane Generation Capacity,  $L_o$  (ft<sup>3</sup>/ton): 3,204 Methane Content of LFG: 50%

Generated During Project Lifetime (ft³/min):

 Minimum:
 1,167

 Annual Average:
 1,513

 Maximum:
 1,813

Collected During Project Lifetime (ft³/min):

 Minimum:
 992

 Annual Average:
 1,286

 Maximum:
 1,541

Project Size: Defined by User

Design Flow Rate for Project (ft<sup>3</sup>/min): 1,112

Utilized by Project (ft³/min):

Annual Average: 1,019 **LFG Collection Efficiency:** 85%

**Financial Assumptions** 

Loan Lifetime (years): 10
Interest Rate: 8.0%

General Inflation Rate: 2.5% (applied to O&M costs)

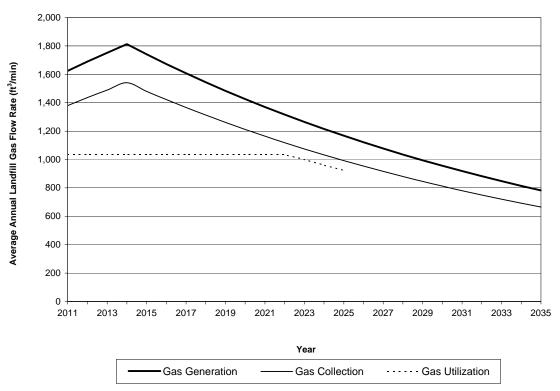
Equipment Inflation Rate: 1.0%

Marginal Tax Rate: 35.0%

Discount Rate: 10.0%

Down Payment: 20.0%

Collection and Flaring Costs: Included


Electricity 2 9/3/2009

## **Electricity Production and Sales Summary**

Total Generation Capacity (kW): 3,000

Average Generation (million kWh/yr): 22.407 (during the life of the project)

Initial Year Electricity Price (\$/kWh): 0.060



Electricity 3 9/3/2009



Case Study ID: Electricity 3

## U.S. EPA Landfill Methane Outreach Program

# Landfill Gas Energy Cost Model LFGcost, Version 2.0

# **Summary Report**

Landfill Name or Identifier: Private Finance at Break Even Electricity Price

Including Costs for Gas Collection and Flare

LFGE Project Type: Standard Reciprocating Engine-Generator Set

Date: Thursday, September 03, 2009

### Disclaimer:

LFGcost is a landfill gas energy project cost estimating tool developed for EPA's LMOP. LFGcost estimates landfill gas generation rates using a first-order decay equation. This equation is used to estimate generation potential but can not be considered an absolute predictor of the rate of landfill gas generation. Variations in the rate and types of incoming waste, site operating conditions, and moisture and temperature conditions may provide substantial variations in the actual rates of generation.

The costs that are estimated by LFGcost are based on typical project designs and for typical landfill situations. The model attempts to include all equipment, site work, permits, operating activities, and maintenance that would normally be required for constructing and operating a typical project. However, individual landfills may require unique design modifications which would add to the cost estimated by LFGcost.

Analyses performed using LFGcost are considered preliminary and should be used for guidance only. A detailed final feasibility assessment should be conducted by qualified landfill gas professionals prior to preparing a system design, initiating construction, purchasing materials, or entering into agreements to provide or purchase energy from a landfill gas project.

## **Summary Results**

Project Start Year: 2011
Project End Year: 2025

Project Type: Standard Reciprocating Engine-Generator Set

**Financial Results:** 

Net Present Value: \$4,881 (at year of construction)

Internal Rate of Return: 10%

Net Present Value Payback (yrs): 15 (years after operation begins)

Installed Capital Costs:

Gas Collection and Flare: \$2,480,713

Gas Compression/Treatment, Engine/Generator, Site Work, and

Housings: \$4,895,775
Electrical Interconnect Equipment: \$255,025
Total Capital Costs: \$7,631,513

O&M Costs: \$924,816 (for initial year of operation)

These financial results include the costs associated with the gas collection and flaring system.

Electricity 3 9/3/2009

### **Environmental Benefits**

Benefits from Collecting and Destroying Methane (during the life of the project):

Lifetime

(million ft<sup>3</sup> methane): 5,068 (MMTCO<sub>2</sub>E): 2.04E+00

Average Annual

(million  $\text{ft}^3$  methane/yr): 338 (MMTCO<sub>2</sub>E/yr): 1.36E-01

Benefits from Avoided Electricity Generation from Fossil Fuels (during the life of the project):

Lifetime (MMTCO<sub>2</sub>E): 2.41E-01 Average Annual (MMTCO<sub>2</sub>E/yr): 1.61E-02

**Landfill Characteristics** 

Open Year: 1994
Closure Year: 2014

Waste-In-Place at Closure (tons) 5,400,000

Average Waste Acceptance (tons/yr): 270,000

Average Depth of Landfill Waste (ft): 50

Area of LFG Wellfield to Supply Project (acres): 110

Landfill Gas Generation, Collection, and Utilization

**Modeling Parameters for First-Order Decay Equation:** 

Methane Generation Rate, k (1/yr): 0.040 Methane Generation Capacity,  $L_o$  (ft<sup>3</sup>/ton): 3,204 Methane Content of LFG: 50%

Generated During Project Lifetime (ft³/min):

 Minimum:
 1,167

 Annual Average:
 1,513

 Maximum:
 1,813

Collected During Project Lifetime (ft³/min):

 Minimum:
 992

 Annual Average:
 1,286

 Maximum:
 1,541

Project Size: Defined by User

Design Flow Rate for Project (ft<sup>3</sup>/min): 1,112

Utilized by Project (ft³/min):

Annual Average: 1,019 **LFG Collection Efficiency:** 85%

**Financial Assumptions** 

Loan Lifetime (years): 10
Interest Rate: 8.0%

General Inflation Rate: 2.5% (applied to O&M costs)

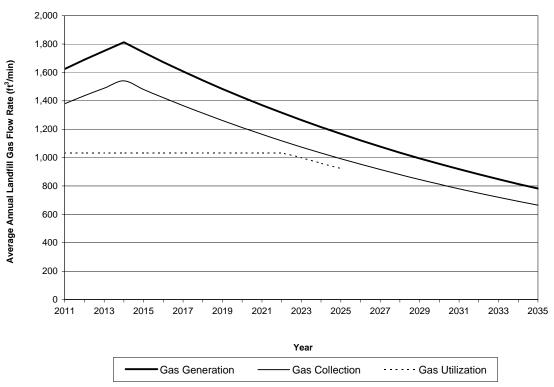
Equipment Inflation Rate: 1.0%

Marginal Tax Rate: 35.0%

Discount Rate: 10.0%

Down Payment: 20.0%

Collection and Flaring Costs: Included


Electricity 3 9/3/2009

## **Electricity Production and Sales Summary**

Total Generation Capacity (kW): 3,000

Average Generation (million kWh/yr): 22.407 (during the life of the project)

Price to Achieve Financial Goals (\$/kWh): 0.0876 (determined by Financial Goals Calculator results)



Electricity 4 9/3/2009



Case Study ID: Electricity 4

## U.S. EPA Landfill Methane Outreach Program

# Landfill Gas Energy Cost Model LFGcost, Version 2.0

# **Summary Report**

Landfill Name or Identifier: Private Finance with CO2 Credit

Including Costs for Gas Collection and Flare

LFGE Project Type: Standard Reciprocating Engine-Generator Set

Date: Thursday, September 03, 2009

### Disclaimer:

LFGcost is a landfill gas energy project cost estimating tool developed for EPA's LMOP. LFGcost estimates landfill gas generation rates using a first-order decay equation. This equation is used to estimate generation potential but can not be considered an absolute predictor of the rate of landfill gas generation. Variations in the rate and types of incoming waste, site operating conditions, and moisture and temperature conditions may provide substantial variations in the actual rates of generation.

The costs that are estimated by LFGcost are based on typical project designs and for typical landfill situations. The model attempts to include all equipment, site work, permits, operating activities, and maintenance that would normally be required for constructing and operating a typical project. However, individual landfills may require unique design modifications which would add to the cost estimated by LFGcost.

Analyses performed using LFGcost are considered preliminary and should be used for guidance only. A detailed final feasibility assessment should be conducted by qualified landfill gas professionals prior to preparing a system design, initiating construction, purchasing materials, or entering into agreements to provide or purchase energy from a landfill gas project.

## **Summary Results**

Project Start Year: 2011
Project End Year: 2025

Project Type: Standard Reciprocating Engine-Generator Set

**Financial Results:** 

Net Present Value: (\$62,709) (at year of construction)

Internal Rate of Return: 10%

Net Present Value Payback (yrs): None (years after operation begins)

Installed Capital Costs:

Gas Collection and Flare: \$2,480,713

Gas Compression/Treatment, Engine/Generator, Site Work, and

Housings: \$4,895,775

Electrical Interconnect Equipment: \$255,025

Total Capital Costs: \$7,631,513

O&M Costs: \$884,764 (for initial year of operation)

These financial results include the costs associated with the gas collection and flaring system.

Electricity 4 9/3/2009

### **Environmental Benefits**

Benefits from Collecting and Destroying Methane (during the life of the project):

Lifetime

(million ft<sup>3</sup> methane): 5,068 (MMTCO<sub>2</sub>E): 2.04E+00

Average Annual

(million  ${\rm ft}^3$  methane/yr): 338 (MMTCO $_2$ E/yr): 1.36E-01

Benefits from Avoided Electricity Generation from Fossil Fuels (during the life of the project):

Lifetime (MMTCO<sub>2</sub>E): 2.41E-01 Average Annual (MMTCO<sub>2</sub>E/yr): 1.61E-02

**Landfill Characteristics** 

 Open Year:
 1994

 Closure Year:
 2014

Waste-In-Place at Closure (tons) 5,400,000

Average Waste Acceptance (tons/yr): 270,000

Average Depth of Landfill Waste (ft): 50

Area of LFG Wellfield to Supply Project (acres): 110

Landfill Gas Generation, Collection, and Utilization

Modeling Parameters for First-Order Decay Equation:

Methane Generation Rate, k (1/yr): 0.040 Methane Generation Capacity,  $L_o$  (ft<sup>3</sup>/ton): 3,204 Methane Content of LFG: 50%

Generated During Project Lifetime (ft<sup>3</sup>/min):

 Minimum:
 1,167

 Annual Average:
 1,513

 Maximum:
 1,813

Collected During Project Lifetime (ft<sup>3</sup>/min):

 Minimum:
 992

 Annual Average:
 1,286

 Maximum:
 1,541

Project Size: Defined by User

Design Flow Rate for Project (ft<sup>3</sup>/min): 1,112

Utilized by Project (ft³/min):

Annual Average: 1,019 **LFG Collection Efficiency:** 85%

**Financial Assumptions** 

Loan Lifetime (years): 10
Interest Rate: 8.0%

General Inflation Rate: 2.5% (applied to O&M costs)

Equipment Inflation Rate: 1.0%

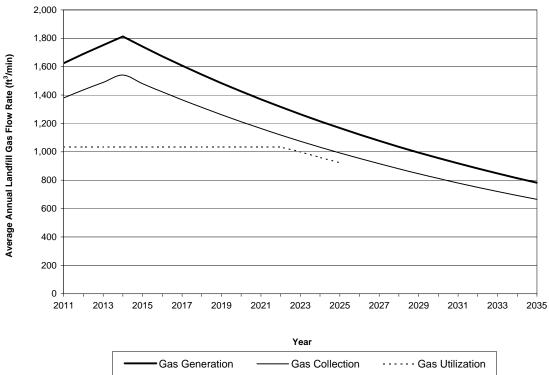
Marginal Tax Rate: 35.0%

Discount Rate: 10.0%

Down Payment: 20.0%

Collection and Flaring Costs: Included

CO2 Emission Reduction Credit (\$/MTCO<sub>2</sub>E): \$4.00


Electricity 4 9/3/2009

## **Electricity Production and Sales Summary**

Total Generation Capacity (kW): 3,000

Average Generation (million kWh/yr): 22.407 (during the life of the project)

Initial Year Electricity Price (\$/kWh): 0.060



Electricity 5 9/3/2009



Case Study ID: Electricity 5

## U.S. EPA Landfill Methane Outreach Program

# Landfill Gas Energy Cost Model LFGcost, Version 2.0

# **Summary Report**

Landfill Name or Identifier: Private Finance with Renewable Electricity Credit (REC)

**LFGE Project Type:** Standard Reciprocating Engine-Generator Set

Date: Thursday, September 03, 2009

### Disclaimer:

LFGcost is a landfill gas energy project cost estimating tool developed for EPA's LMOP. LFGcost estimates landfill gas generation rates using a first-order decay equation. This equation is used to estimate generation potential but can not be considered an absolute predictor of the rate of landfill gas generation. Variations in the rate and types of incoming waste, site operating conditions, and moisture and temperature conditions may provide substantial variations in the actual rates of generation.

The costs that are estimated by LFGcost are based on typical project designs and for typical landfill situations. The model attempts to include all equipment, site work, permits, operating activities, and maintenance that would normally be required for constructing and operating a typical project. However, individual landfills may require unique design modifications which would add to the cost estimated by LFGcost.

Analyses performed using LFGcost are considered preliminary and should be used for guidance only. A detailed final feasibility assessment should be conducted by qualified landfill gas professionals prior to preparing a system design, initiating construction, purchasing materials, or entering into agreements to provide or purchase energy from a landfill gas project.

## **Summary Results**

Project Start Year: 2011
Project End Year: 2025

Project Type: Standard Reciprocating Engine-Generator Set

Financial Results:

Net Present Value: \$2,615,488 (at year of construction)

Internal Rate of Return: 30%

Net Present Value Payback (yrs): 5 (years after operation begins)

Installed Capital Costs:

 ${\it Gas\ Compression/Treatment,\ Engine/Generator,\ Site\ Work,\ and}$ 

 Housings:
 \$4,895,775

 Electrical Interconnect Equipment:
 \$255,025

 Total Capital Costs:
 \$5,150,800

O&M Costs: \$526,317 (for initial year of operation)

These financial results DO NOT include the costs associated with the LFG collection and flaring system.

Electricity 5 9/3/2009

### **Environmental Benefits**

Benefits from Collecting and Destroying Methane (during the life of the project):

Lifetime

(million  $ft^3$  methane): 5,068 (MMTCO<sub>2</sub>E): 2.04E+00

Average Annual

(million  $\text{ft}^3$  methane/yr): 338 (MMTCO<sub>2</sub>E/yr): 1.36E-01

Benefits from Avoided Electricity Generation from Fossil Fuels (during the life of the project):

Lifetime (MMTCO<sub>2</sub>E): 2.41E-01 Average Annual (MMTCO<sub>2</sub>E/yr): 1.61E-02

**Landfill Characteristics** 

 Open Year:
 1994

 Closure Year:
 2014

Waste-In-Place at Closure (tons) 5,400,000

Average Waste Acceptance (tons/yr): 270,000

Average Depth of Landfill Waste (ft): 50

Area of LFG Wellfield to Supply Project (acres): 110

Landfill Gas Generation, Collection, and Utilization

Modeling Parameters for First-Order Decay Equation:

Methane Generation Rate, k (1/yr): 0.040 Methane Generation Capacity,  $L_o$  (ft<sup>3</sup>/ton): 3,204 Methane Content of LFG: 50%

Generated During Project Lifetime (ft<sup>3</sup>/min):

 Minimum:
 1,167

 Annual Average:
 1,513

 Maximum:
 1,813

Collected During Project Lifetime (ft³/min):

 Minimum:
 992

 Annual Average:
 1,286

 Maximum:
 1,541

Project Size: Defined by User

Design Flow Rate for Project (ft<sup>3</sup>/min): 1,112

Utilized by Project (ft³/min):

Annual Average: 1,019 **LFG Collection Efficiency:** 85%

**Financial Assumptions** 

Loan Lifetime (years): 10
Interest Rate: 8.0%

General Inflation Rate: 2.5% (applied to O&M costs)

Equipment Inflation Rate: 1.0%

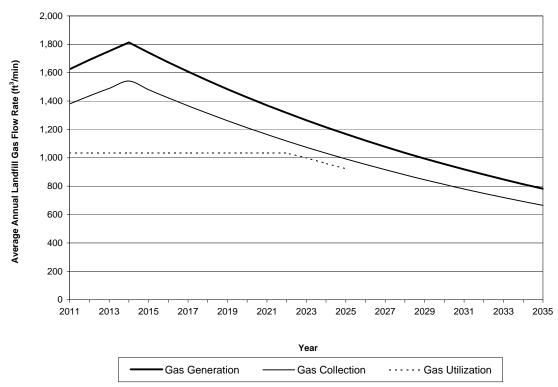
Marginal Tax Rate: 35.0%

Discount Rate: 10.0%

Down Payment: 20.0%

Collection and Flaring Costs: NOT Included

Renewable Electricity Credit (\$/kWh): \$0.02


Electricity 5 9/3/2009

## **Electricity Production and Sales Summary**

Total Generation Capacity (kW): 3,000

Average Generation (million kWh/yr): 22.407 (during the life of the project)

Initial Year Electricity Price (\$/kWh): 0.060



Electricity 6 9/3/2009



Case Study ID: Electricity 6

## U.S. EPA Landfill Methane Outreach Program

# Landfill Gas Energy Cost Model LFGcost, Version 2.0

# **Summary Report**

Landfill Name or Identifier: Municipal Budget Finance

LFGE Project Type: Standard Reciprocating Engine-Generator Set

Date: Thursday, September 03, 2009

### Disclaimer:

LFGcost is a landfill gas energy project cost estimating tool developed for EPA's LMOP. LFGcost estimates landfill gas generation rates using a first-order decay equation. This equation is used to estimate generation potential but can not be considered an absolute predictor of the rate of landfill gas generation. Variations in the rate and types of incoming waste, site operating conditions, and moisture and temperature conditions may provide substantial variations in the actual rates of generation.

The costs that are estimated by LFGcost are based on typical project designs and for typical landfill situations. The model attempts to include all equipment, site work, permits, operating activities, and maintenance that would normally be required for constructing and operating a typical project. However, individual landfills may require unique design modifications which would add to the cost estimated by LFGcost.

Analyses performed using LFGcost are considered preliminary and should be used for guidance only. A detailed final feasibility assessment should be conducted by qualified landfill gas professionals prior to preparing a system design, initiating construction, purchasing materials, or entering into agreements to provide or purchase energy from a landfill gas project.

## **Summary Results**

Project Start Year: 2011
Project End Year: 2025

Project Type: Standard Reciprocating Engine-Generator Set

Financial Results:

Net Present Value: \$3,536,852 (at year of construction)

Internal Rate of Return: 15%

Net Present Value Payback (yrs): 8 (years after operation begins)

Installed Capital Costs:

Gas Compression/Treatment, Engine/Generator, Site Work, and

 Housings:
 \$4,895,775

 Electrical Interconnect Equipment:
 \$255,025

 Total Capital Costs:
 \$5,150,800

O&M Costs: \$526,317 (for initial year of operation)

These financial results DO NOT include the costs associated with the LFG collection and flaring system.

Electricity 6 9/3/2009

### **Environmental Benefits**

Benefits from Collecting and Destroying Methane (during the life of the project):

Lifetime

(million  $\text{ft}^3$  methane): 5,068 (MMTCO<sub>2</sub>E): 2.04E+00

Average Annual

(million  ${\rm ft}^3$  methane/yr): 338 (MMTCO<sub>2</sub>E/yr): 1.36E-01

Benefits from Avoided Electricity Generation from Fossil Fuels (during the life of the project):

Lifetime (MMTCO<sub>2</sub>E): 2.41E-01 Average Annual (MMTCO<sub>2</sub>E/yr): 1.61E-02

**Landfill Characteristics** 

 Open Year:
 1994

 Closure Year:
 2014

 Waste-In-Place at Closure (tons)
 5,400,000

Average Waste Acceptance (tons/yr): 270,000

Average Depth of Landfill Waste (ft): 50

Area of LFG Wellfield to Supply Project (acres): 110

Landfill Gas Generation, Collection, and Utilization

Modeling Parameters for First-Order Decay Equation:

Methane Generation Rate, k (1/yr): 0.040 Methane Generation Capacity,  $L_o$  (ft<sup>3</sup>/ton): 3,204 Methane Content of LFG: 50%

Generated During Project Lifetime (ft³/min):

 Minimum:
 1,167

 Annual Average:
 1,513

 Maximum:
 1,813

Collected During Project Lifetime (ft³/min):

 Minimum:
 992

 Annual Average:
 1,286

 Maximum:
 1,541

Project Size: Defined by User

Design Flow Rate for Project (ft<sup>3</sup>/min): 1,112

Utilized by Project (ft³/min):

Annual Average: 1,019 **LFG Collection Efficiency:** 85%

**Financial Assumptions** 

 Loan Lifetime (years):
 Not Applicable

 Interest Rate:
 Not Applicable

**General Inflation Rate:** 2.5% (applied to O&M costs)

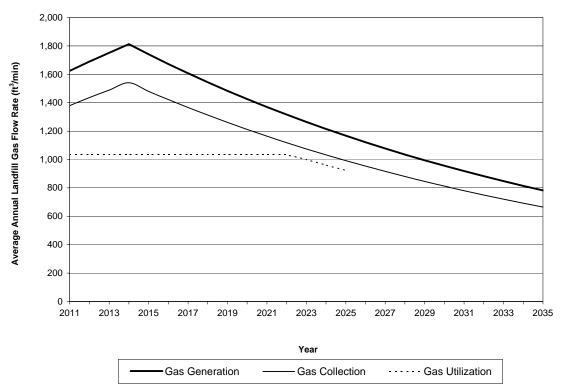
Equipment Inflation Rate: 1.0%

Marginal Tax Rate: Not Applicable

Discount Rate: 6.0%

Down Payment: 100.0%

Collection and Flaring Costs: NOT Included


Electricity 6 9/3/2009

## **Electricity Production and Sales Summary**

Total Generation Capacity (kW): 3,000

Average Generation (million kWh/yr): 22.407 (during the life of the project)

Initial Year Electricity Price (\$/kWh): 0.060



Electricity 7 9/3/2009



Case Study ID: Electricity 7

## U.S. EPA Landfill Methane Outreach Program

# Landfill Gas Energy Cost Model LFGcost, Version 2.0

# **Summary Report**

Landfill Name or Identifier: Municipal Bond Finance

LFGE Project Type: Standard Reciprocating Engine-Generator Set

Date: Thursday, September 03, 2009

### Disclaimer:

LFGcost is a landfill gas energy project cost estimating tool developed for EPA's LMOP. LFGcost estimates landfill gas generation rates using a first-order decay equation. This equation is used to estimate generation potential but can not be considered an absolute predictor of the rate of landfill gas generation. Variations in the rate and types of incoming waste, site operating conditions, and moisture and temperature conditions may provide substantial variations in the actual rates of generation.

The costs that are estimated by LFGcost are based on typical project designs and for typical landfill situations. The model attempts to include all equipment, site work, permits, operating activities, and maintenance that would normally be required for constructing and operating a typical project. However, individual landfills may require unique design modifications which would add to the cost estimated by LFGcost.

Analyses performed using LFGcost are considered preliminary and should be used for guidance only. A detailed final feasibility assessment should be conducted by qualified landfill gas professionals prior to preparing a system design, initiating construction, purchasing materials, or entering into agreements to provide or purchase energy from a landfill gas project.

## **Summary Results**

Project Start Year: 2011
Project End Year: 2025

Project Type: Standard Reciprocating Engine-Generator Set

**Financial Results:** 

Net Present Value: \$3,303,608 (at year of construction)

Internal Rate of Return: 24%

Net Present Value Payback (yrs): 7 (years after operation begins)

Installed Capital Costs:

 ${\it Gas\ Compression/Treatment,\ Engine/Generator,\ Site\ Work,\ and}$ 

Housings: \$4,895,775

Electrical Interconnect Equipment: \$255,025

Total Capital Costs: \$5,150,800

O&M Costs: \$526,317 (for initial year of operation)

These financial results DO NOT include the costs associated with the LFG collection and flaring system.

Electricity 7 9/3/2009

### **Environmental Benefits**

Benefits from Collecting and Destroying Methane (during the life of the project):

Lifetime

(million  $ft^3$  methane): 5,068 (MMTCO<sub>2</sub>E): 2.04E+00

Average Annual

(million  $\text{ft}^3$  methane/yr): 338 (MMTCO<sub>2</sub>E/yr): 1.36E-01

Benefits from Avoided Electricity Generation from Fossil Fuels (during the life of the project):

Lifetime (MMTCO<sub>2</sub>E): 2.41E-01 Average Annual (MMTCO<sub>2</sub>E/yr): 1.61E-02

**Landfill Characteristics** 

 Open Year:
 1994

 Closure Year:
 2014

 Waste-In-Place at Closure (tons)
 5,400,000

Average Waste Acceptance (tons/yr): 270,000

Average Depth of Landfill Waste (ft): 50

Area of LFG Wellfield to Supply Project (acres): 110

Landfill Gas Generation, Collection, and Utilization

Modeling Parameters for First-Order Decay Equation:

Methane Generation Rate, k (1/yr): 0.040 Methane Generation Capacity,  $L_o$  (ft<sup>3</sup>/ton): 3,204 Methane Content of LFG: 50%

Generated During Project Lifetime (ft³/min):

 Minimum:
 1,167

 Annual Average:
 1,513

 Maximum:
 1,813

Collected During Project Lifetime (ft³/min):

 Minimum:
 992

 Annual Average:
 1,286

 Maximum:
 1,541

Project Size: Defined by User

Design Flow Rate for Project (ft<sup>3</sup>/min): 1,112

Utilized by Project (ft³/min):

Annual Average: 1,019 **LFG Collection Efficiency:** 85%

**Financial Assumptions** 

Loan Lifetime (years): 10
Interest Rate: 6.0%

General Inflation Rate: 2.5% (applied to O&M costs)

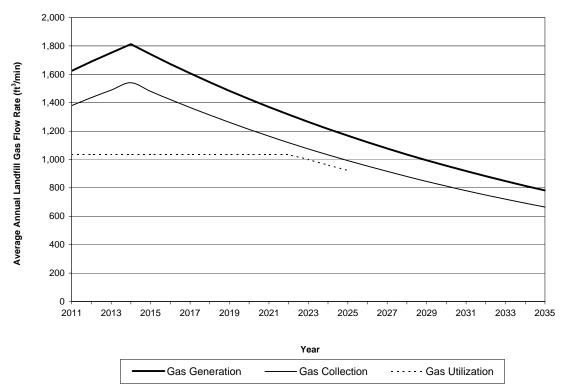
Equipment Inflation Rate: 1.0%

Marginal Tax Rate: Not Applicable

Discount Rate: 6.0%

Down Payment: 20.0%

Collection and Flaring Costs: NOT Included


Electricity 7 9/3/2009

## **Electricity Production and Sales Summary**

Total Generation Capacity (kW): 3,000

Average Generation (million kWh/yr): 22.407 (during the life of the project)

Initial Year Electricity Price (\$/kWh): 0.060



Electricity 8 9/3/2009



Case Study ID: Electricity 8

## U.S. EPA Landfill Methane Outreach Program

# Landfill Gas Energy Cost Model LFGcost, Version 2.0

# **Summary Report**

Landfill Name or Identifier: Municipal Budget Finance

Including Costs for Gas Collection and Flare

LFGE Project Type: Standard Reciprocating Engine-Generator Set

Date: Thursday, September 03, 2009

### Disclaimer:

LFGcost is a landfill gas energy project cost estimating tool developed for EPA's LMOP. LFGcost estimates landfill gas generation rates using a first-order decay equation. This equation is used to estimate generation potential but can not be considered an absolute predictor of the rate of landfill gas generation. Variations in the rate and types of incoming waste, site operating conditions, and moisture and temperature conditions may provide substantial variations in the actual rates of generation.

The costs that are estimated by LFGcost are based on typical project designs and for typical landfill situations. The model attempts to include all equipment, site work, permits, operating activities, and maintenance that would normally be required for constructing and operating a typical project. However, individual landfills may require unique design modifications which would add to the cost estimated by LFGcost.

Analyses performed using LFGcost are considered preliminary and should be used for guidance only. A detailed final feasibility assessment should be conducted by qualified landfill gas professionals prior to preparing a system design, initiating construction, purchasing materials, or entering into agreements to provide or purchase energy from a landfill gas project.

## **Summary Results**

Project Start Year: 2011
Project End Year: 2025

Project Type: Standard Reciprocating Engine-Generator Set

Financial Results:

Net Present Value: (\$2,553,089) (at year of construction)

Internal Rate of Return: 0%

Net Present Value Payback (yrs): None (years after operation begins)

Installed Capital Costs:

Gas Collection and Flare: \$2,480,713

Gas Compression/Treatment, Engine/Generator, Site Work, and

Housings: \$4,895,775

Electrical Interconnect Equipment: \$255,025

Total Capital Costs: \$7,631,513

O&M Costs: \$884,764 (for initial year of operation)

These financial results include the costs associated with the gas collection and flaring system.

Electricity 8 9/3/2009

270,000

### **Environmental Benefits**

Benefits from Collecting and Destroying Methane (during the life of the project):

Lifetime

(million ft<sup>3</sup> methane): 5,068 (MMTCO<sub>2</sub>E): 2.04E+00

Average Annual

(million  ${\rm ft}^3$  methane/yr): 338 (MMTCO<sub>2</sub>E/yr): 1.36E-01

Benefits from Avoided Electricity Generation from Fossil Fuels (during the life of the project):

Lifetime (MMTCO<sub>2</sub>E): 2.41E-01 Average Annual (MMTCO<sub>2</sub>E/yr): 1.61E-02

**Landfill Characteristics** 

 Open Year:
 1994

 Closure Year:
 2014

 Waste-In-Place at Closure (tons)
 5,400,000

Average Depth of Landfill Waste (ft): 50

Area of LFG Wellfield to Supply Project (acres): 110

Landfill Gas Generation, Collection, and Utilization

Average Waste Acceptance (tons/yr):

Modeling Parameters for First-Order Decay Equation:

Methane Generation Rate, k (1/yr): 0.040 Methane Generation Capacity,  $L_o$  (ft<sup>3</sup>/ton): 3,204 Methane Content of LFG: 50%

Generated During Project Lifetime (ft<sup>3</sup>/min):

 Minimum:
 1,167

 Annual Average:
 1,513

 Maximum:
 1,813

Collected During Project Lifetime (ft³/min):

 Minimum:
 992

 Annual Average:
 1,286

 Maximum:
 1,541

Project Size: Defined by User

Design Flow Rate for Project (ft<sup>3</sup>/min): 1,112

Utilized by Project (ft³/min):

Annual Average: 1,019 **LFG Collection Efficiency:** 85%

**Financial Assumptions** 

 Loan Lifetime (years):
 Not Applicable

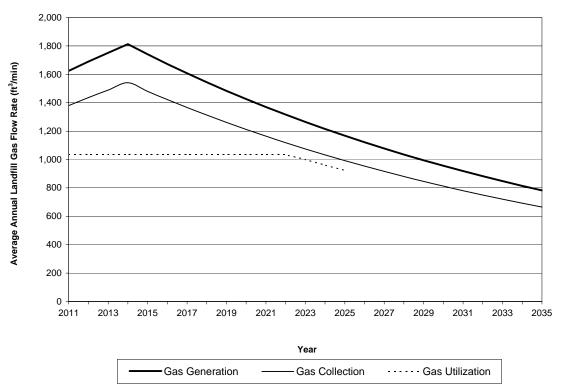
 Interest Rate:
 Not Applicable

General Inflation Rate: 2.5% (applied to O&M costs)

Equipment Inflation Rate: 1.0%

Marginal Tax Rate: Not Applicable

Discount Rate:6.0%Down Payment:100.0%Collection and Flaring Costs:Included


Electricity 8 9/3/2009

## **Electricity Production and Sales Summary**

Total Generation Capacity (kW): 3,000

Average Generation (million kWh/yr): 22.407 (during the life of the project)

Initial Year Electricity Price (\$/kWh): 0.060



Electricity 9 9/3/2009



Case Study ID: Electricity 9

## U.S. EPA Landfill Methane Outreach Program

# Landfill Gas Energy Cost Model LFGcost, Version 2.0

# **Summary Report**

Landfill Name or Identifier: Municipal Bond Finance

Including Costs for Gas Collection and Flare

LFGE Project Type: Standard Reciprocating Engine-Generator Set

Date: Thursday, September 03, 2009

### Disclaimer:

LFGcost is a landfill gas energy project cost estimating tool developed for EPA's LMOP. LFGcost estimates landfill gas generation rates using a first-order decay equation. This equation is used to estimate generation potential but can not be considered an absolute predictor of the rate of landfill gas generation. Variations in the rate and types of incoming waste, site operating conditions, and moisture and temperature conditions may provide substantial variations in the actual rates of generation.

The costs that are estimated by LFGcost are based on typical project designs and for typical landfill situations. The model attempts to include all equipment, site work, permits, operating activities, and maintenance that would normally be required for constructing and operating a typical project. However, individual landfills may require unique design modifications which would add to the cost estimated by LFGcost.

Analyses performed using LFGcost are considered preliminary and should be used for guidance only. A detailed final feasibility assessment should be conducted by qualified landfill gas professionals prior to preparing a system design, initiating construction, purchasing materials, or entering into agreements to provide or purchase energy from a landfill gas project.

## **Summary Results**

Project Start Year: 2011
Project End Year: 2025

Project Type: Standard Reciprocating Engine-Generator Set

Financial Results:

Net Present Value: (\$2,898,667) (at year of construction)

Internal Rate of Return: -5%

Net Present Value Payback (yrs): None (years after operation begins)

Installed Capital Costs:

Gas Collection and Flare: \$2,480,713

Gas Compression/Treatment, Engine/Generator, Site Work, and

Housings: \$4,895,775

Electrical Interconnect Equipment: \$255,025

Total Capital Costs: \$7,631,513

O&M Costs: \$884,764 (for initial year of operation)

These financial results include the costs associated with the gas collection and flaring system.

Electricity 9 9/3/2009

### **Environmental Benefits**

Benefits from Collecting and Destroying Methane (during the life of the project):

Lifetime

(million ft<sup>3</sup> methane): 5,068 (MMTCO<sub>2</sub>E): 2.04E+00

Average Annual

(million ft<sup>3</sup> methane/yr): 338 (MMTCO<sub>2</sub>E/yr): 1.36E-01

Benefits from Avoided Electricity Generation from Fossil Fuels (during the life of the project):

Lifetime (MMTCO<sub>2</sub>E): 2.41E-01 Average Annual (MMTCO<sub>2</sub>E/yr): 1.61E-02

**Landfill Characteristics** 

 Open Year:
 1994

 Closure Year:
 2014

 Waste-In-Place at Closure (tons)
 5,400,000

Average Waste Acceptance (tons/yr): 270,000

Average Depth of Landfill Waste (ft): 50

Area of LFG Wellfield to Supply Project (acres): 110

Landfill Gas Generation, Collection, and Utilization

**Modeling Parameters for First-Order Decay Equation:** 

Methane Generation Rate, k (1/yr): 0.040 Methane Generation Capacity,  $L_o$  (ft<sup>3</sup>/ton): 3,204 Methane Content of LFG: 50%

Generated During Project Lifetime (ft<sup>3</sup>/min):

 Minimum:
 1,167

 Annual Average:
 1,513

 Maximum:
 1,813

Collected During Project Lifetime (ft<sup>3</sup>/min):

 Minimum:
 992

 Annual Average:
 1,286

 Maximum:
 1,541

Project Size: Defined by User

Design Flow Rate for Project (ft<sup>3</sup>/min): 1,112

Utilized by Project (ft³/min):

Annual Average: 1,019 **LFG Collection Efficiency:** 85%

**Financial Assumptions** 

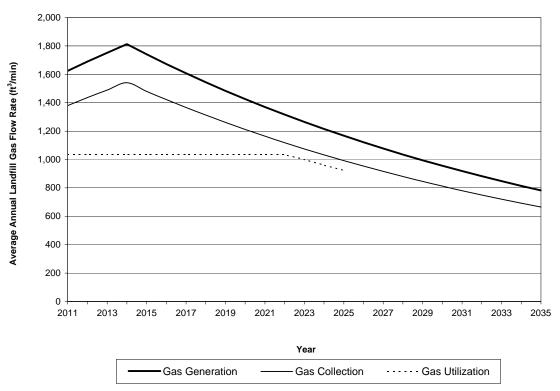
Loan Lifetime (years): 10
Interest Rate: 6.0%

General Inflation Rate: 2.5% (applied to O&M costs)

Equipment Inflation Rate: 1.0%

Marginal Tax Rate: Not Applicable

Discount Rate:6.0%Down Payment:20.0%Collection and Flaring Costs:Included


Electricity 9 9/3/2009

## **Electricity Production and Sales Summary**

Total Generation Capacity (kW): 3,000

Average Generation (million kWh/yr): 22.407 (during the life of the project)

Initial Year Electricity Price (\$/kWh): 0.060



Electricity 10 9/3/2009



Case Study ID: Electricity 10

## U.S. EPA Landfill Methane Outreach Program

# Landfill Gas Energy Cost Model LFGcost, Version 2.0

# **Summary Report**

Landfill Name or Identifier: Municipal Bond Finance at Break Even Electricity Price

Including Costs for Gas Collection and Flare

LFGE Project Type: Standard Reciprocating Engine-Generator Set

Date: Thursday, September 03, 2009

### Disclaimer:

LFGcost is a landfill gas energy project cost estimating tool developed for EPA's LMOP. LFGcost estimates landfill gas generation rates using a first-order decay equation. This equation is used to estimate generation potential but can not be considered an absolute predictor of the rate of landfill gas generation. Variations in the rate and types of incoming waste, site operating conditions, and moisture and temperature conditions may provide substantial variations in the actual rates of generation.

The costs that are estimated by LFGcost are based on typical project designs and for typical landfill situations. The model attempts to include all equipment, site work, permits, operating activities, and maintenance that would normally be required for constructing and operating a typical project. However, individual landfills may require unique design modifications which would add to the cost estimated by LFGcost.

Analyses performed using LFGcost are considered preliminary and should be used for guidance only. A detailed final feasibility assessment should be conducted by qualified landfill gas professionals prior to preparing a system design, initiating construction, purchasing materials, or entering into agreements to provide or purchase energy from a landfill gas project.

## **Summary Results**

Project Start Year: 2011
Project End Year: 2025

Project Type: Standard Reciprocating Engine-Generator Set

**Financial Results:** 

Net Present Value: \$3,135 (at year of construction)

Internal Rate of Return: 6%

Net Present Value Payback (yrs): 15 (years after operation begins)

Installed Capital Costs:

Gas Collection and Flare: \$2,480,713

Gas Compression/Treatment, Engine/Generator, Site Work, and

Housings: \$4,895,775

Electrical Interconnect Equipment: \$255,025

Total Capital Costs: \$7,631,513

O&M Costs: \$904,064 (for initial year of operation)

These financial results include the costs associated with the gas collection and flaring system.

Electricity 10 9/3/2009

### **Environmental Benefits**

Benefits from Collecting and Destroying Methane (during the life of the project):

Lifetime

(million ft<sup>3</sup> methane): 5,068 (MMTCO<sub>2</sub>E): 2.04E+00

Average Annual

(million ft<sup>3</sup> methane/yr): 338 (MMTCO<sub>2</sub>E/yr): 1.36E-01

Benefits from Avoided Electricity Generation from Fossil Fuels (during the life of the project):

Lifetime (MMTCO<sub>2</sub>E): 2.41E-01 Average Annual (MMTCO<sub>2</sub>E/yr): 1.61E-02

**Landfill Characteristics** 

 Open Year:
 1994

 Closure Year:
 2014

 Waste-In-Place at Closure (tons)
 5,400,000

Average Waste Acceptance (tons/yr): 270,000

Average Depth of Landfill Waste (ft): 50

Area of LFG Wellfield to Supply Project (acres): 110

Landfill Gas Generation, Collection, and Utilization

Modeling Parameters for First-Order Decay Equation:

Methane Generation Rate, k (1/yr): 0.040 Methane Generation Capacity,  $L_o$  (ft<sup>3</sup>/ton): 3,204 Methane Content of LFG: 50%

Generated During Project Lifetime (ft<sup>3</sup>/min):

 Minimum:
 1,167

 Annual Average:
 1,513

 Maximum:
 1,813

Collected During Project Lifetime (ft³/min):

 Minimum:
 992

 Annual Average:
 1,286

 Maximum:
 1,541

Project Size: Defined by User

Design Flow Rate for Project (ft<sup>3</sup>/min): 1,112

Utilized by Project (ft³/min):

Annual Average: 1,019 **LFG Collection Efficiency:** 85%

**Financial Assumptions** 

Loan Lifetime (years): 10
Interest Rate: 6.0%

General Inflation Rate: 2.5% (applied to O&M costs)

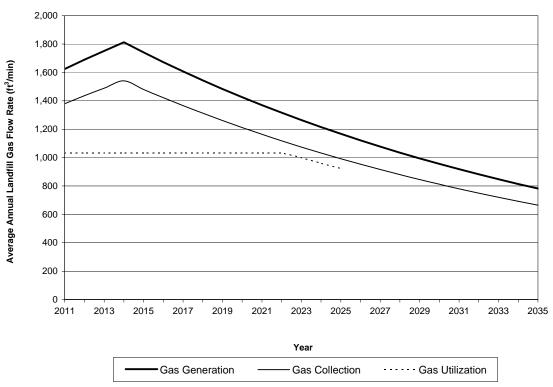
Equipment Inflation Rate: 1.0%

Marginal Tax Rate: Not Applicable

Discount Rate: 6.0%

Down Payment: 20.0%

Collection and Flaring Costs: Included


Electricity 10 9/3/2009

## **Electricity Production and Sales Summary**

Total Generation Capacity (kW): 3,000

Average Generation (million kWh/yr): 22.407 (during the life of the project)

Price to Achieve Financial Goals (\$/kWh): 0.073 (determined by Financial Goals Calculator results)

